Involvement of Intracellular and Mitochondrial Aβ in the Ameliorative Effects of Huperzine A against Oligomeric Aβ42-Induced Injury in Primary Rat Neurons

نویسندگان

  • Yun Lei
  • Ling Yang
  • Chun Yan Ye
  • Ming Yan Qin
  • Huai Yu Yang
  • Hua Liang Jiang
  • Xi Can Tang
  • Hai Yan Zhang
  • Donghui Zhu
چکیده

Considerable studies indicate huperzine A is a promising natural product to suppress neuronal damages induced by β-amyloid (Aβ), a key pathogenic event in the Alzheimer's disease (AD). As an extension, the present study for the first time explored whether the beneficial profiles of huperzine A against oligomeric Aβ(42) induced neurotoxicity are associated with the accumulation and detrimental function of intraneuronal/mitochondrial Aβ, on the basis of the emerging evidence that intracellular Aβ is more relevant to AD progression as compared with extracellular Aβ. Huperzine A treatment was shown to significantly attenuate the neurotoxicity of oligomeric Aβ(42), as demonstrated by increased neuronal viability. Interestingly, our results proved that exogenous Aβ(42) could accumulate intraneuronally in a dose- and time-dependent manner, while huperzine A treatment markedly reduced the level of intracellular Aβ(42). Moreover, huperzine A treatment rescued mitochondrial dysfunction induced by oligomeric Aβ(42), including adenosine triphosphate (ATP) reduction, reactive oxygen species (ROS) overproduction and membrane potential depolarization. Further study demonstrated that huperzine A also significantly reduced the level of Aβ(42) in the mitochondria-enriched subcellular fractions, as well as the Aβ(42) fluorescent signals colocalized with mitochondrial marker. This study indicates that interfering intracellular Aβ especially mitochondrial Aβ accumulation, together with ameliorating Aβ-associated mitochondrial dysfunction, may contribute to the protective effects of huperzine A against Aβ neurotoxicity. Above results may shed more light on the pharmacological mechanisms of huperzine A and provide important clues for discovering novel therapeutic strategies for AD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Peroxisome Proliferator-activated Receptor (PPAR)-γ Modifies Aβ Neurotoxin-induced Electrophysiological Alterations in Rat Primary Cultured Hippocampal Neurons

Alzheimer’s disease (AD) is undoubtedly one of the serious and growing public health challenges in the world today. There is an unmet need for new and effective preventative and therapeutic treatment approaches for AD, particularly at early stages of the disease. However, the underlying mechanism against Aβ-induced electrophysiological alteration in cultured hippocampal pyramidal neurons  is st...

متن کامل

Screening seven Iranian medicinal plants for protective effects against β-Amyloid-induced cytotoxicity in cultured cerebellar granule neurons

Background and objectives: Alzheimer's disease (AD) as a neurodegenerative disorder is the most common form of dementia in the elderly. According to the amyloid hypothesis, accumulation of amyloid beta (Aβ) plaques, which are mostly constituted of Aβ peptide aggregates, triggers pathological cascades that lead to neuronal cell death. Thus, modulation of Aβ toxicity is the hopef...

متن کامل

Peroxisome Proliferator-activated Receptor (PPAR)-γ Modifies Aβ Neurotoxin-induced Electrophysiological Alterations in Rat Primary Cultured Hippocampal Neurons

Alzheimer’s disease (AD) is undoubtedly one of the serious and growing public health challenges in the world today. There is an unmet need for new and effective preventative and therapeutic treatment approaches for AD, particularly at early stages of the disease. However, the underlying mechanism against Aβ-induced electrophysiological alteration in cultured hippocampal pyramidal neurons  is st...

متن کامل

Involvement of Four Different Intracellular Sites in Chloroacetaldehyde- Induced Oxidative Stress Cytotoxicity

Chloroacetaldehyde (CAA) is a chlorination by-product in finished drinking water and a toxic metabolite of a wide variety of industrial chemicals (e.g. vinyl chloride) and chemotherapeutic agents (e.g. cyclophosphamide and ifosfamide). In this research, the cytotoxic mechanisms of CAA in freshly isolated rat hepatocytes were investigated.CAA cytotoxicity was associated with reactive oxygen spec...

متن کامل

Involvement of Four Different Intracellular Sites in Chloroacetaldehyde- Induced Oxidative Stress Cytotoxicity

Chloroacetaldehyde (CAA) is a chlorination by-product in finished drinking water and a toxic metabolite of a wide variety of industrial chemicals (e.g. vinyl chloride) and chemotherapeutic agents (e.g. cyclophosphamide and ifosfamide). In this research, the cytotoxic mechanisms of CAA in freshly isolated rat hepatocytes were investigated.CAA cytotoxicity was associated with reactive oxygen spec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015